Efecte dels usos i les cobertes del sòl i les polítiques ambientals en el comportament de les temperatures superficials en campus universitaris: El cas de la Universitat Autònoma de Barcelona

Autors/ores

Resum

La gestió de les temperatures, fonamental en el context del canvi climàtic, ha estat un punt central en les polítiques urbanes, sovint relegant a un segon pla els espais periurbans com ara els campus universitaris. Mitjançant la teledetecció i l’anàlisi estadística, aquest article explora l’impacte dels usos del sòl i les polítiques ambientals en el comportament espacial de les temperatures superficials al campus de la Universitat Autònoma de Barcelona entre el 2014 i el 2022. S’hi identifica una relació directa entre els usos del sòl urbanitzats i nus amb anomalies tèrmiques superiors a la mitjana, mentre que les zones cobertes de vegetació natural estan relacionades amb temperatures superficials inferiors a la mitjana, posant de manifest àrees crítiques no considerades per l’agenda ambiental de la universitat. Aquest article proposa estratègies de mitigació per millorar les polítiques ambientals i incrementar el confort tèrmic de la comunitat universitària.

Paraules clau

espais periurbans, planificació territorial, LULC, TST, ICUS

Referències

ABDULATEEF, M. F. y AL-ALWAN, H. A. S. (2022). «The effectiveness of urban green infrastructure in reducing surface urban heat island: Baghdad city as a case study». Ain Shams Engineering Journal, 13 (1), 101526. https://doi.org/10.1016/j.asej.2021.06.012

ADDAS, A.; GOLDBLATT, R. y RUBINYI, S. (2020). «Utilizing remotely sensed observations to estimate the urban heat Island effect at a local scale: Case study of a University campus». Land, 9 (6). https://doi.org/10.3390/LAND9060191

AEMET (2022). Redes de observación de superficie y en altura. Redes de observación de superficie y en altura. Recuperado de www.aemet.es/ca/idi/observacion/observacion_convencional [Fecha de consulta: 19/01/2024].

ALONSO, M. S.; LABAJO, J. L. y FIDALGO, M. R. (2003). «Characteristics of the urban heat island in the city of Salamanca, Spain». Atmosfera, 16 (3), 137-148.

ANDRADE, H. y VIEIRA, R. (2007). «A climatic study of an urban green space: The Gulbenkian Park in Lisbon (Portugal)». Finisterra, 42 (84). https://doi.org/10.18055/FINIS1420

ARAGÓN, J. A.; RODRÍGUEZ, E. D.; VARON, G. A. y SÁNCHEZ, G. A. (2020). «Análisis de islas de calor por medio de imágenes satelitales y sistemas de información geográficos en el área urbana de la Sabana de Bogotá». Geographicalia, 72, 39-64. https://doi.org/10.26754/ojs_geoph/geoph.2020724571

ARAGONESES DE LA RUBIA, E. (2020). «Caracterización de la isla de calor urbana en el campus de la UAM por medio de teledetección». GeoFocus: Revista Internacional de Ciencia y Tecnología de la Información Geográfica, 26, 43-67. https://doi.org/10.21138/GF.678

AVDAN, U. y JOVANOVSKA, G. (2016). «Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data». Journal of Sensors, ID 1480307-1480315. https://doi.org/10.1155/2016/1480307

BALANY, F.; NG, A. W. M.; MUTTIL, N.; MUTHUKUMARAN, S. y WONG, M. S. (2020). «Green infrastructure as an urban heat island mitigation strategy—A review». Water (Switzerland), 12 (12), 1-22. https://doi.org/10.3390/w12123577

BATTISTA, G.; EVANGELISTI, L.; GUATTARI, C.; VOLLARO, E. D. L.; VOLLARO, R. D. L. y ASDRUBALI, F. (2020). «Urban heat island mitigation strategies: Experimental and numerical analysis of a university campus in Rome (Italy)». Sustainability (Switzerland), 12 (19), 1-18. https://doi.org/10.3390/su12197971

BOKAIE, M.; ZARKESH, M. K.; ARASTEH, P. D. y HOSSEINI, A. (2016). «Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/ Land Cover in Tehran». Sustainable Cities and Society, 23, 94-104. https://doi.org/10.1016/j.scs.2016.03.009

CHENG, D.; GAO, C.; SHAO, T. e IQBAL, J. (2020). «A Landscape Study of Sichuan University (Wangjiang Campus) from the Perspective of Campus Tourism». Land, 9 (12), 499-520. https://doi.org/10.3390/land9120499

CHUN, B. y GULDMANN, J.-M. (2018). «Impact of greening on the urban heat island: Seasonal variations and mitigation strategies». Computers, Environment and Urban Systems, 71, 165-176. https://doi.org/10.1016/j.compenvurbsys.2018.05.006

DEZSŐ, Z.; PONGRÁCZ, R. y BARTHOLY, J. (2019). «Analysis of surface temperature measurements over complex urban sites». Geographica Pannonica, 23 (4), 337-346. https://doi.org/10.5937/gp23-23844

DÍAZ-DELGADO, R. y PONS, X. (2001). «Spatial patterns of forest fires in Catalonia (NE of Spain) along the period 1975–1995: analysis of vegetation recovery after fire». Forest Ecology and Management, 147 (1), 67-74. https://doi.org/10.1016/S0378-1127(00)00434-5

DWIVEDI, A. y MOHAN, B. K. (2018). «Impact of green roof on micro climate to reduce Urban Heat Island». Remote Sensing Applications: Society and Environment, 10, 56-69. https://doi.org/10.1016/j.rsase.2018.01.003

EUMETSAT (2022). Meteosat series. Recuperado de https://www.eumetsat.int/our-satellites/meteosat-series [Fecha de consulta: 19/01/2024].

EUROPEAN ENVIRONMENT AGENCY (2020). Urban adaptation in Europe: How cities and towns respond to climate change. Luxemburgo: Publications Office of the European Union. https://doi.org/10.2800/324620

FASHAE, O. A.; ADAGBASA, E. G.; OLUSOLA, A. O.; OBATERU, R. O. (2020). «Land use/land cover change and land surface temperature of Ibadan and environs, Nigeria». Environmental Monitoring and Assessment, 192 (2), 109. https://doi.org/10.1007/s10661-019-8054-3

FERNÁNDEZ-PABLOS, E.; VERDÚ-VÁZQUEZ, A.; LÓPEZ-ZALDÍVAR, Ó. y LOZANO-DÍEZ, R. V. (2021). «Periurban Areas in the Design of Supra-Municipal Strategies for Urban Green Infrastructures». Forests, 12 (5), 626. https://doi.org/10.3390/f12050626

FUNG, W.; LAM, K.; HUNG, W.; PANG, S. y LEE, Y. (2006). «Impact of urban temperature on energy consumption of Hong Kong». Energy, 31 (14), 2623-2637. https://doi.org/10.1016/j.energy.2005.12.009

GHAFFARIANHOSEINI, A.; BERARDI, U.; GHAFFARIANHOSEINI, A. y AL-OBAIDI, K. (2019). «Analyzing the thermal comfort conditions of outdoor spaces in a university campus in Kuala Lumpur, Malaysia». Science of the Total Environment, 666, 1327-1345. https://doi.org/10.1016/j.scitotenv.2019.01.284

GÓMEZ-VILLARINO, M. T.; GÓMEZ VILLARINO, M. y RUIZ-GARCÍA, L. (2020). «Implementation of Urban Green Infrastructures in Peri-Urban Areas: A Case Study of Climate Change Mitigation in Madrid». Agronomy, 11 (1), 31. https://doi.org/10.3390/agronomy11010031

HERATH, H. M. P. I. K.; HALWATURA, R. U. y JAYASINGHE, G. Y. (2018). «Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy». Urban Forestry & Urban Greening, 29, 212-222. https://doi.org/10.1016/j.ufug.2017.11.013

HERRERA-GÓMEZ, S. S.; QUEVEDO-NOLASCO, A. y PÉREZ-URRESTARAZU, L. (2017). «The role of green roofs in climate change mitigation: A case study in Seville (Spain)». Building and Environment, 123, 575-584. https://doi.org/10.1016/j.buildenv.2017.07.036

HIDALGO-GARCÍA, D. y ARCO-DÍAZ, J. (2021). «Spatial and Multi-Temporal Analysis of Land Surface Temperature through Landsat 8 Images: Comparison of Algorithms in a Highly Polluted City (Granada)». Remote Sensing, 13, 1012. https://doi.org/10.3390/rs13051012

HIDALGO-GARCÍA, D. y ARCO-DÍAZ, J. (2022). «Modeling the Surface Urban Heat Island (SUHI) to study of its relationship with variations in the thermal field and with the indices of land use in the metropolitan area of Granada (Spain)». Sustainable Cities and Society, 87, 104166. https://doi.org/10.1016/j.scs.2022.104166

JENKS, G. F. (1967). «The data model concept in statistical mapping». International Yearbook of Cartography, 7, 186-190.

JIA, X.; DUKES, M. D. y MILLER, G. L. (2007). «Temperature Increase on Synthetic Turf Grass». World Environmental and Water Resources Congress 2007, 1-20. https://doi.org/10.1061/40927(243)240

JIANG, J. y TIAN, G. (2010). «Analysis of the impact of Land use/Land cover change on Land Surface Temperature with Remote Sensing». Procedia Environmental Sciences, 2, 571-575. https://doi.org/10.1016/j.proenv.2010.10.062

KIM, J.; LEE, S. Y. y KANG, J. (2020). «Temperature Reduction Effects of Rooftop Garden Arrangements: A Case Study of Seoul National University». Sustainability, 12 (15), 6032. https://doi.org/10.3390/su12156032

KUMARI, P.; KAPUR, S.; GARG, V. y KUMAR, K. (2020). «Effect of Surface Temperature on Energy Consumption in a Calibrated Building: A Case Study of Delhi». Climate, 8 (6), 71. https://doi.org/10.3390/cli8060071

LEAL FILHO, W.; WOLF, F.; CASTRO-DÍAZ, R.; LI, C.; OJEH, V. N.; GUTIÉRREZ, N.; NAGY, G. J.; SAVIĆ, S.; NATENZON, C. E.; QUASEM AL-AMIN, A.; MARUNA, M. y BÖNECKE, J. (2021). «Addressing the Urban Heat Islands Effect: A Cross-Country Assessment of the Role of Green Infrastructure». Sustainability, 13 (2), 753. https://doi.org/10.3390/su13020753

LÓPEZ-BUENO, J. A.; DÍAZ, J. y LINARES, C. (2019). «Differences in the impact of heat waves according to urban and peri-urban factors in Madrid». International Journal of Biometeorology, 63 (3), 371-380. https://doi.org/10.1007/s00484-019-01670-9

MAHARJAN, M.; ARYAL, A.; MAN SHAKYA, B.; TALCHABHADEL, R.; THAPA, B. R. y KUMAR, S. (2021). «Evaluation of Urban Heat Island (UHI) Using Satellite Images in Densely Populated Cities of South Asia». Earth, 2 (1), 86-110. https://doi.org/10.3390/earth2010006

MALLEN, E.; BAKIN, J.; STONE, B.; SIVAKUMAR, R. y LANZA, K. (2020). «Thermal impacts of built and vegetated environments on local microclimates in an Urban University campus». Urban Climate, 32 (april), 100640. https://doi.org/10.1016/j.uclim.2020.100640

METEOCAT (2022). Dades d’estacions meteorològiques automàtiques de Catalunya: Mapa d’estacions automàtiques. Recuperado de https://www.meteo.cat/observacions/xema [Fecha de consulta: 19/01/2024].

METEOCAT (2024). Dades de l’estació automàtica Sabadell - Parc Agrari. Recuperado de https://www.meteo.cat/observacions/xema/dades?codi=XF [consulta: 19 de enero de 2024].

NASA (2022). ARSET - Satellite Remote Sensing for Urban Heat Islands. Recuperado de https://appliedsciences.nasa.gov/get-involved/training/english/arset-satellite-remote-sensing-measuring-urban-heat-islands-and [Fecha de consulta: 19/01/2024].

POTCHTER, O.; COHEN, P. y BITAN, A. (2006). «Climatic behavior of various urban parks during hot and humid summer in the mediterranean city of Tel Aviv, Israel». International Journal of Climatology, 26 (12), 1695-1711. https://doi.org/10.1002/joc.1330

POZO, S. del; LANDES, T.; NERRY, F.; KASTENDEUCH, P.; NAJJAR, G.; PHILIPPS, N. y LAGÜELA, S. (2020). «UHI estimation based on aster and MODIS satellite imagery: first results on Strasbourg city, France». The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B3-2020, 799-805. https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-799-2020

RAZZAGHMANESH, M.; BEECHAM, S. y SALEMI, T. (2016). «The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia». Urban Forestry & Urban Greening, 15, 89-102. https://doi.org/10.1016/j.ufug.2015.11.013

SANTAMOURIS, M. (2023). «Urban climate change: Reasons, magnitude, impact, and mitigation». En: Urban Climate Change and Heat Islands. Ámsterdam: Elsevier, 1-27. https://doi.org/10.1016/B978-0-12-818977-1.00002-8

SFAKIANAKI, A.; PAGALOU, E.; PAVLOU, K.; SANTAMOURIS, M. y ASSIMAKOPOULOS, M. N. (2009). «Theoretical and experimental analysis of the thermal behaviour of a green roof system installed in two residential buildings in Athens, Greece». International Journal of Energy Research, 33 (12), 1059-1069. https://doi.org/10.1002/er.1535

SHASHUA-BAR, L.; HOFFMAN, M. E. y TZAMIR, Y. (2006). «Integrated thermal effects of generic built forms and vegetation on the UCL microclimate». Building and Environment, 41 (3), 343-354. https://doi.org/10.1016/j.buildenv.2005.01.032

SHENG, L.; TANG, X.; YOU, H.; GU, Q. y HU, H. (2017). «Comparison of the urban heat island intensity quantified by using air temperature and Landsat land surface temperature in Hangzhou, China». Ecological Indicators, 72, 738-746. https://doi.org/10.1016/j.ecolind.2016.09.009

SKELHORN, C.; LINDLEY, S. y LEVERMORE, G. (2014). «The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK». Landscape and Urban Planning, 121, 129-140. https://doi.org/10.1016/j.landurbplan.2013.09.012

SOBRINO, J. A. y JIMÉNEZ-MUÑOZ, J. (2005). «Land surface temperature retrieval from thermal infrared data: An assessment in the context of the Surface Processes and Ecosystem Changes Through Response Analysis (SPECTRA) mission». Journal of Geophysical Research, 110 (D16), D16103. https://doi.org/10.1029/2004JD005588

SOTO-SOTO, J. E.; GARZON-BARRERO, J. y JIMENEZ-CLEVES, G. (2020). «Análisis de islas de calor urbano usando imágenes Landsat caso de estudio Armenia-Colombia 1996-2018». Revista Espacios, 41 (8), 9. Recuperado de https://www.revistaespacios.com/a20v41n08/a20v41n08p09.pdf.

SUCAPUCA MAMANI, R. O.; CHOQUEHUANCA SOTO, J. D. y PELINCO RUEDAS, E. (2022). «Islas de calor urbano mediante imágenes satelitales en la ciudad de Juliaca durante el año 2019». Ciencia & Desarrollo, 21 (1), 10-28. https://doi.org/10.33326/26176033.2022.1.1387

SUSCA, T.; GAFFIN, S. R. y DELL’OSSO, G. R. (2011). «Positive effects of vegetation: Urban heat island and green roofs». Environmental Pollution, 159 (8-9), 2119-2126. https://doi.org/10.1016/j.envpol.2011.03.007

TALEGHANI, M.; TENPIERIK, M.; VAN DEN DOBBELSTEEN, A.; SAILOR, D. J. (2014). «Heat mitigation strategies in winter and summer: Field measurements in temperate climates». Building and Environment, 81, 309-319. https://doi.org/10.1016/j.buildenv.2014.07.010

TAN, J.; YU, D.; LI, Q.; TAN, X. y ZHOU, W. (2020). «Spatial relationship between land-use/land-cover change and land surface temperature in the Dongting Lake area, China». Scientific Reports, 10, 9245-9254. https://doi.org/10.1038/s41598-020-66168-6

THOMS, A. W.; BROSNAN, J. T.; ZIDEK, J. M. y SOROCHAN, J. C. (2014). «Models for Predicting Surface Temperatures on Synthetic Turf Playing Surfaces». Procedia Engineering, 72, 895-900. https://doi.org/10.1016/j.proeng.2014.06.153

TRAN, D.X.; PLA, F.; LATORRE-CARMONA, P.; MYINT, S.W.; CAETANO, M. y KIEU, H.V. (2017). «Characterizing the relationship between land use land cover change and land surface temperature». ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119-132. https://doi.org/10.1016/j.isprsjprs.2017.01.001

ULPIANI, G. (2021). «On the linkage between urban heat island and urban pollution island: Three-decade literature review towards a conceptual framework». Science of The Total Environment, 751, 141727. https://doi.org/10.1016/j.scitotenv.2020.141727

UNIVERSITAT AUTÒNOMA DE BARCELONA (2023a). Medi ambient, Universitat Autònoma de Barcelona. Recuperado de www.uab.cat/web/uab-medi-ambient-1270542630903.html [Fecha de consulta: 19/01/2024].

UNIVERSITAT AUTÒNOMA DE BARCELONA (2023b). Naturaleza y biodiversidad de la Universitat Autònoma de Barcelona. Recuperado de https://www.uab.cat/web/naturaleza-y-biodiversidad/introduccion-1345828283608.html

UNIVERSITAT AUTÒNOMA DE BARCELONA (2023c). Plan de Gestión de los espacios agroforestales: 180 hectáreas de espacios agroforestales (bosques, prados, cultivos, matorrales,…) y ajardinados. Recuperado de https://www.uab.cat/web/naturaleza-y-biodiversidad/plan-de-gestion-de-los-espacios-agroforestales-1345660888901.html.

USGS (2023a). Landsat Collection 2 Surface Temperature. Recuperado de https://www.usgs.gov/landsat-missions/landsat-collection-2-surface-temperature [consulta: 19 de enero de 2024].

USGS (2023b). Landsat Collection 2 Level-1 Data. Recuperado de https://www.usgs.gov/landsat-missions/landsat-collection-2-level-1-data [consulta: 19 de enero de 2024].

USGS (2023c). Landsat Level-1 Processing Levels. Recuperado de https://www.usgs.gov/landsat-missions/landsat-8-oli-and-tirs-calibration-notices [consulta: 19 de enero de 2024].

USGS (2023d). USGS EROS Archive. Recuperado de https://earthexplorer.usgs.gov/ [consulta: 19 de enero de 2024].

WIBOWO, A.; YUSOFF, M. M.; HAMZAH, T. A. A.; BINTI, T. y SHIDIQ, I. P. A. (2020). «Urban heat hazard threat on University Campus (University of Indonesia and University of Malaya)». International Journal of GEOMATE, 19 (76), 141-148. https://doi.org/10.21660/2020.76.95107

WONG, N. H.; CHEONG, D. K. W.; YAN, H.; SOH, J.; ONG, C. L. y SIA, A. (2003). «The effects of rooftop garden on energy consumption of a commercial building in Singapore». Energy and Buildings, 35, 353-364.

WONG, N. H.; KARDINAL JUSUF, S.; AUNG LA WIN, A.; KYAW THU, H.; SYATIA NEGARA, T. y XUCHAO, W. (2007). «Environmental study of the impact of greenery in an institutional campus in the tropics». Building and Environment, 42 (8), 2949-2970. https://doi.org/10.1016/j.buildenv.2006.06.004

XIAN, G. y GALLO, K. (2020). «Islas de Calor Urbano Observadas a partir de una Serie Temporal de Datos de Teledetección». Applied Remote Sensing Training Program National Aeronautics and Space Administration. Recuperado de https://appliedsciences.nasa.gov/sites/default/files/2020-11/UHI_Part3_Xian_Span.pdf [Fecha de consulta: 19/01/2024].

YANG, J.; YU, Q. y GONG, P. (2008). «Quantifying air pollution removal by green roofs in Chicago». Atmospheric Environment, 42 (31), 7266-7273. https://doi.org/10.1016/j.atmosenv.2008.07.003

YI, T.; WANG, H.; LIU, C.; LI, X. y WU, J. (2022). «Thermal comfort differences between urban villages and formal settlements in Chinese developing cities: A case study in Shenzhen». Science of The Total Environment, 853, 158283. https://doi.org/10.1016/j.scitotenv.2022.158283

Publicades

2024-05-15

Descàrregues

Les dades de descàrrega encara no estan disponibles.