Big data and new geographies: The digital footprint of human activity
Abstract
The term ‘big data’ has become popular in recent years and refers to the production of huge amounts of data. Human activity is captured through multiple networks of sensors and devices, thus leaving a digital footprint. The analysis of this digital footprint has a great potential for geographical research on human behavior. This article describes the main characteristics of big data and highlights the importance of massive data for science and particularly for the field of geography, focusing on the study of spatio-temporal patterns of human activity.Keywords
big data, geo-located data, human behaviorReferences
ALEXANDER, L.; JIANG, S.; MURGA, M. y GONZÁLEZ, M. C. (2015). «Origin-destination trips by purpose and time of day inferred from mobile phone data», Transportation Research Part C: Emerging Technologies, 58, 240-250.
BAR-GERA, H. (2007). «Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel», Transportation Research Part C: Emerging Technologies, 15 (6), 380-391. http://dx.doi.org/10.1016/j.trc.2007.06.003
BASSOLAS, A., LENORMAND, M., TUGORES, A., GONÇALVES, B. y RAMASCO, J. J. (2016). «Touristic site attractiveness seen through Twitter». EPJ Data Science, 5 (1), 12.
BATES, J. (2012). «‘This is what modern deregulation looks like’: co-optation and contestation in the shaping of the UK’s Open Government Data Initiative». The Journal of Community Informatics, 8 (2).
BATTY, M. (2010). «The pulse of the city». Environment and Planning B: Planning and Design, 37, 575-577.
— (2013). «Big Data, smart cities and city planning». Dialogues in Human Geography, 3 (3), 274-279.
BLOEM, J.; VAN DOORN, M.; DUIVESTEIN, S.; EXCOFFIER, D.; MAAS, R. y VAN OMMEREN, E. (2014). The Fourth Industrial Revolution. Things Tighten.
BOISJOLY, G. y EL-GENEIDY, A. (2016). «Daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures». Journal of Transport Geography, 52, 73-81.
CÁCERES, N. (2012). «Traffic Flow Estimation Models Using Cellular Phone Data», IEEE Transactions on Intelligent Transportation Systems, 1-12. http://dx.doi.org/10.1109/TITS.2012.2189006
CÁCERES, N., WIDEBERG, J. P. y BENÍTEZ, F. G. (2007). «Deriving origin-destination data from a mobile phone network», IET Intelligent Transport Systems, 1, 15-26. http://dx.doi.org/10.1049/iet-its:20060020
CALABRESE, F.; LORENZO, G. D.; PEREIRA, F. C.; LIU, L. y RATTI, C. (2010). Analyzing Cell-phone Mobility and Social Events. NetMob-Analysis of Mobile Phone Networks. Cambridge, MA.
CASTELL, N.; DAUGE, F. R.; SCHNEIDER, P.; VOGT, M.; LERNER, U.; FISHBAIN, B.; BRODAY, D. y BARTONOVA, A. (2017). «Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?». Environment International, 99, 293-302.
CHEN, M.; MAO, S. y LIU, Y. (2014). «Big Data: A survey». Mobile Networks and Applications, 19 (2), 171-209.
CHEN, C.; MA, J.; SUSILO, Y.; LIU, Y. y WANG, M. (2016). «The promises of Big Data and small data for travel behavior (aka human mobility) analysis». Transportation Research Part C: Emerging Technologies, 68, 285-299.
DELYSER, D. y SUI, D. (2014). «Crossing the qualitative-quantitative chasm III: Enduring methods, open geography, participatory research, and the fourth paradigm». Progress in Human Geography, 38 (2), 294-307.
DE DOMENICO, M.; LIMA, A. y MUSOLESI, M. (2013). «Interdependence and predictability of human mobility and social interactions», Pervasive and Mobile Computing, 9 (6), 798-807. http://dx.doi.org/10.1016/j.pmcj.2013.07.008
DEWULF, B.; NEUTENS, T.; LEFEBVRE, W.; SEYNAEVE, G.; VANPOUCKE, C.; BECKX, C. y VAN DE WEGHE, N. (2016). «Dynamic assessment of exposure to air pollution using mobile phone data». International Journal of Health Geographic, 15 (1), 14.
FARBER, S.; MORANG, M. Z. y WIDENER, M. J. (2014). «Temporal variability in transit-based accessibility to supermarkets». Applied Geography, 53, 149-159.
FARBER, S. y FU, L. (2017). «Dynamic public transit accessibility using travel time cubes: Comparing the effects of infrastructure (dis) investments over time». Computers, Environment and Urban Systems, 62, 30-40.
GARCÍA-PALOMARES, J. C.; SALAS-OLMEDO, M. H.; MOYA-GÓMEZ, B.; CONDEÇO-MELHORADO, A. M. y GUTIÉRREZ, J. (2018). «City dynamics through Twitter: relationships between land use and spatiotemporal demographics». Cities, 72, 310-319.
GONZALEZ, M. C.; HIDALGO, C. A. y BARABASI, A.-L. (2008). «Understanding individual human mobility patterns». Nature, 453 (5), 779-782.
GOODCHILD, M. F. (2007). «In the World of Web 2.0». International Journal, 2, 24-32.
GRAY, J. y SZALAY, E. (2007). eScience - a transformed scientific method. Presentation made to the NRC-CSTB. http://research.microsoft.com/en-us/um/people/gray/talks/NRC-CSTB_eScience.ppt
GUTIÉRREZ, J.; GARCÍA-PALOMARES, J. C., ROMANILLOS, G. y SALAS-OLMEDO, M. H. (2017). «The eruption of Airbnb in tourist cities: Comparing spatial patterns of hotels and peer-to-peer accommodation in Barcelona». Tourism Management, 62, 278-291.
HAWELKA, B.; SITKO, I.; BEINAT, E.; SOBOLEVSKY, S.; KAZAKOPOULOS, P. y RATTI, C. (2014). «Geo-located Twitter as proxy for global mobility patterns». Cartography and Geographic Information Science, 41 (3), 260-271.
HEY, T.; TANSLEY, S.; y TOLLE, K. I. (2009). The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond, WA: Microsoft Research.
KAISLER, S.; ARMOUR, F.; ESPINOSA, J. A. y MONEY, W. (2013, enero). «Big Data: Issues and challenges moving forward». En: System Sciences (HICSS), 2013. 46th Hawaii International Conference. IEEE. 995-1004.
KITCHIN, R. (2013). «Big Data and human geography: opportunities, challenges and risks». Dialogues in Human Geography, 3 (3), 262-267.
— (2014). «Big Data, new epistemologies and paradigm shifts». Big Data & Society, 1 (1), 1-12.
LESZCZYNSKI, A. y CRAMPTON, J. (2016). «Introduction: spatial big data and everyday life». Big Data & Society, 3 (2), 1-6.
MILLER, H. J. (2010). «The data avalanche is here. Shouldn’t we be digging?». Journal of Regional Science, 50 (1), 181-201.
MOYA-GÓMEZ, B. y GARCÍA-PALOMARES, J. C. (2015). «Working with the daily variation in infrastructure performance. The cases of Madrid and Barcelona». European Transport Research Review, 7 (2), 1-13
MOYA-GÓMEZ, B.; SALAS-OLMEDO, M. H.; GARCÍA-PALOMARES, J. C. y GUTIÉRREZ, J. (2017). «Dynamic accessibility using Big Data: The role of the changing conditions of network congestion and destination attractiveness». Networks and Spatial Economics. https://doi.org/10.1007/s11067-017-9348-z
MUNIZAGA, M.; PALMA, C. y MORA, P. (2010). «Public transport OD matrix estimation from smart card payment system data». En: Proceedings from 12th World Conference on Transport Research. Lisboa, Paper, 2988.
NETTO, V. M.; PINHEIRO, M.; MEIRELLES, J. V. y LEITE, H. (2015). «Digital footprints in the cityscape: finding networks of segregation through Big Data». En: International Conference on Location-Based Social Media Data. Atenas, 1-15.
PICORNELL, M.; RUIZ, T.; LENORMAND, M.; RAMASCO, J. J.; DUBERNET, T. y FRÍAS-MARTÍNEZ, E. (2015). «Exploring the potential of phone call data to characterize the relationship between social network and travel behavior». Transportation, 42, 647-668.
ROMANILLOS, G. y ZALTZ AUSTWICK, M. (2016). «Madrid cycle track: visualizing the cyclable city». Journal of Maps, 12 (5), 1218-1226.
SALAS-OLMEDO, M. H.; MOYA-GÓMEZ, B.; GARCÍA-PALOMARES, J. C. y GUTIÉRREZ, J. (2018). «Tourists’ digital footprint in cities: Comparing Big Data sources». Tourism Management, 66, 13-25.
SHELTON, T.; POORTHUIS, A. y ZOOK, M. (2015). «Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information», Landscape and Urban Planning, 142, 198-211.
SCHWAB, K. (2017). The fourth industrial revolution. Crown Business.
SOBOLEVSKY, S.; SITKO, I.; DES COMBES, R. T.; HAWELKA, B.; ARIAS, J. M. y RATTI, C. (2016). «Cities through the prism of people’s spending behavior». PloS one, 11 (2), 1-19.
STĘPNIAK, M. y GOLISZEK, S. (2017). «Spatio-temporal variation of accessibility by public transport-the equity perspective». En: The Rise of Big Spatial Data. Springer International Publishing, 241-261.
TAO, S.; ROHDE, D. y CORCORAN, J. (2014). «Examining the spatial-temporal dynamics of bus passenger travel behavior using smart card data and the flow-comap», Journal of Transport Geography, 41, 21-36. http://dx.doi.org/10.1016/j.jtrangeo.2014.08.006
TOOLE, J. L.; COLAK, S.; STURT, B.; ALEXANDER, L. P.; EVSUKOFF, A. Y GONZÁLEZ, M. C. (2015). «The path most traveled: Travel demand estimation using big data resources». Transportation Research Part C: Emerging Technologies, 58, 162-177.
XIA, F.; YANG, L. T.; WANG, L. y VINEL, A. (2012). «Internet of things». International Journal of Communication Systems, 25 (9), 1101-1102.
Published
How to Cite
Downloads
Copyright (c) 2018 Javier Gutiérrez Puebla

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.