Desigualdades espaciales de la incidencia de la COVID-19 en relación con factores económicos y sociodemográficos en la Comunidad Autónoma de Madrid (España)
Resumen
En este artículo se modela la relación entre la incidencia de la COVID-19 y varios factores socioeconómicos durante el segundo período epidémico (22/06/2020 – 06/12/2020) en la Comunidad de Madrid (España). Los datos tomados en zonas básicas de salud (ZBS) se ajustan mediante el método del bosque aleatorio, muy apropiado para capturar relaciones no lineales y obtener predicciones más precisas y robustas. Los resultados muestran que el impacto de las variables socioeconómicas en las tasas de incidencia de la COVID-19 no es uniforme y que la renta media tiene una influencia más fuerte que la densidad de población, la proporción de población española, la edad media de la población y el tamaño medio de los hogares. De la combinación de los impactos emerge un patrón espacial complejo que refleja el peso relativo de los diferentes factores en la intensidad de la pandemia. Esta información es estratégica para la gestión eficaz de los recursos sanitarios.
Palabras clave
COVID-19, factores económicos, factores sociodemográficos, bosque aleatorio, Comunidad Autónoma de MadridCitas
ALMENDRA, Ricardo; SANTANA, Paula and COSTA, Claudia (2021). “Spatial inequalities of COVID-19 incidence and associated socioeconomic risk factors in Portugal”. Boletín de la Asociación de Geógrafos Españoles, 91. https://doi.org/10.21138/bage.3160 DOI: https://doi.org/10.21138/bage.3160
AMDAOUD, Mounir; ARCURI, Giuseppe; LEVRATTO, Nadine; SUCCURRO, Marianna and CONSTANZO, Damiana (2020). “Geography of COVID-19 outbreak and first policy answers in European regions and cities”. Halshs-03046489. Retrieved from https://halshs.archives-ouvertes.fr/halshs-03046489
AMENGUAL-MORENO, Miquel; CALAFAT-CAULES, Marina; CAROT, Aina; ROSA CORREIA, Ana Rita; RÍO-BERGÉ, Claudia; ROVIRA PLUJÀ, Jana; VALENZUELA PASCUAL, Clàudia and VENTURA-GABARRÓ, Cèlia (2020). “Social determinants of the incidence of Covid-19 in Barcelona: a preliminary ecological study using public data”. Revista española de salud pública, 94. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/32935664
ANSELIN, Luc (2020). Documentation/GeoDa on Github/GeoDa Workbook. Retrieved from https://geodacenter.github.io/documentation.html
ANSELIN, Luc (2021). GeoDa (Tm) (1.20.). Retrieved from https://geodacenter.github.io/
ARAUZO-CAROD, Josep-Maria; DOMÈNECH, Antoni and GUTIÉRREZ, Aaron (2021). “Do local characteristics act in a similar way for the first two waves of COVID-19? Analysis at intraurban level in Barcelona”. Journal of Public Health, 43 (3), 455-461. https://doi.org/10.1093/pubmed/fdaa238 DOI: https://doi.org/10.1093/pubmed/fdaa238
ARROYO-MENÉNDEZ, Millán; BARAÑANO-CID, Margarita and UCEDA-NAVAS, Pedro (2022). “¿Desiguales en la smart city? Segregación espacial y desigualdades digitales en Madrid/Unequal in the Smart City? Spatial Segregation and Digital Inequalities in Madrid”. Revista Española de Investigaciones Sociológicas. https://doi.org/10.5477/cis/reis.180.19 DOI: https://doi.org/10.5477/cis/reis.180.19
ARTIGA, Samantha and HINTO, Elizabeth (2018). Beyond health care: the role of social determinants in promoting health and health equity. KFF.org. Retrieved from https://www.kff.org/racial-equity-and-health-policy/issue-brief/beyond-health-care-the-role-of-social-determinants-in-promoting-health-and-health-equity/
BAENA-DÍEZ, Jose Miguel; BARROSO, María; CORDEIRO-COELHO, Sara Isabel; DÍAZ, Jorge Luis and GRAU, María (2020). “Impact of COVID-19 outbreak by income: hitting hardest the most deprived”. Journal of Public Health, 42 (4), 698-703. https://doi.org/10.1093/pubmed/fdaa136 DOI: https://doi.org/10.1093/pubmed/fdaa136
BARROS-GUERTON, Javier and EZQUIAGA-DOMÍNGUEZ, José María (2023). “Caer y levantarse: como la ciudad de Madrid ha afrontado el COVID19 de acuerdo con los datos de libre reutilización”. Ciudad y Territorio Estudios Territoriales, 55 (218), 1033-1054. https://doi.org/10.37230/CyTET.2023.218.3 DOI: https://doi.org/10.37230/CyTET.2023.218.3
BENITA, Francisco and GASCA-SANCHEZ, Francisco (2021). “The main factors influencing COVID-19 spread and deaths in Mexico: A comparison between phases I and II”. Applied Geography, 134. https://doi.org/10.1016/J.APGEOG.2021.102523 DOI: https://doi.org/10.1016/j.apgeog.2021.102523
BREIMAN, Leo (2001). “Random Forests”. Machine Learning, 45, 5-32. https://doi.org/10.1023/A:1010933404324 DOI: https://doi.org/10.1023/A:1010933404324
CESTARI, Virna Ribeiro Feitosa; FLORÊNCIO SAMPAIO, Raquel; BEZERRA SOUSA, George Jó; SANTOS GARCES, Tiago; ARAÚJO MARANHÃO, Thatiana; RIBEIRO CASTRO, Révia; LUANA CORDEIRO, Ibiapina; VENTURA DAMASCENO, Lara Lídia; VERA LUCIA, Mendes de Paula Pessoa; DUARTE PEREIRA, Maria Lúcia and MAGALHÃES MOREIRA, Thereza Maria (2021). “Social vulnerability and COVID-19 incidence in a Brazilian metropolis”. Ciencia & saude coletiva, 26 (3), 1023-1033. https://doi.org/10.1590/1413-81232021263.42372020 DOI: https://doi.org/10.1590/1413-81232021263.42372020
COMUNIDAD DE MADRID (n. d.). Covid 19 -TIA Zonas Básicas de Salud - Conjuntos de datos - Datos Abiertos Comunidad de Madrid. Retrieved from https://datos.comunidad.madrid/catalogo/dataset/covid19_tia_zonas_basicas_salud [Accessed: 07 February 2022]
CORDES, Jack and CASTRO, Maria (2020). “Spatial analysis of COVID-19 clusters and contextual factors in New York City”. Spatial and Spatio-temporal Epidemiology, 34, 100355. https://doi.org/10.1016/j.sste.2020.100355 DOI: https://doi.org/10.1016/j.sste.2020.100355
DE COS, Olga; CASTILLO-SALCINES, Valentín and CANTARERO-PRIETO, David (2022). “A geographical information system model to define COVID-19 problem areas with an analysis in the socio-economic context at the regional scale in the North of Spain”. Geospatial Health, 17. https://doi.org/10.4081/gh.2022.1067 DOI: https://doi.org/10.4081/gh.2022.1067
DE MATTOS, Ricardo; RUSSO, Rafael; NETO, Mercedes; GOMES-DEPRET, Davi; COSTA GIL, Adriana; SILVA FONSECA, Mary Hellem and SOUZA-SANTOS, Reinaldo (2020). “Effect of income on the cumulative incidence of COVID-19: an ecological study”. Revista Latino-Americana de Enfermagem, 28. https://doi.org/10.1590/1518-8345.4475.3344 DOI: https://doi.org/10.1590/1518-8345.4475.3344
DE MIGUEL ARRIBAS, Alfonso; ALETA, Alberto and MORENO, Yamir (2023). “Assessing the effectiveness of perimeter lockdowns as a response to epidemics at the urban scale”. Scientific Reports, 13 (1), 4474. https://doi.org/10.1038/s41598-023-31614-8 DOI: https://doi.org/10.1038/s41598-023-31614-8
DEMSAR, Janez; CURK, Tomaž; ERJAVEZ, Aleš; GROUP, Črt; HOCEVAR, Tomaž; MILUTINOVIČ, Mitar; MOŽINA, Martin; POLAJNAR, Matija; TOPLAK, Marko; STARIČ, Anže; ŠTAJDOHAR, Miha; UMEK, Lan; ŽAGAR, Lan; ŽBONTAR, Jure; ŽITNIK, Marinka and ZUPAN, Blaž (2013). “Orange: Data Mining Toolbox in Python”. Journal of Machine Learning Research, 14 (Aug.), 2349-2353. Retrieved from http://jmlr.org/papers/v14/demsar13a.html
EUROSTAT (n. d.). Eurostat Metropolitan Region Database. Retrieved from https://ec.europa.eu/eurostat/web/metropolitan-regions/database [Accessed: 15 November 2023]
FLORIDA, Richard and MELLANDER, Charlotta (2022). “The geography of COVID-19 in Sweden”. The Annals of Regional Science, 68, 125-150. https://doi.org/10.1007/s00168-021-01071-0 DOI: https://doi.org/10.1007/s00168-021-01071-0
FLORIDA, Richard; RODRÍGUEZ-POSE, Andrés and STORPER, Michael (2021). “Cities in a post-COVID world”. Urban Studies. https://doi.org/10.1177/00420980211018072 DOI: https://doi.org/10.1177/00420980211018072
FONTÁN-VELA, Mario; GULLÓN, Pedro and PADILLA-BERNÁLDEZ, Javier (2021). “Selective perimeter lockdowns in Madrid: a way to bend the COVID-19 curve?”. European Journal of Public Health, 31 (5), 1102-1104. https://doi.org/10.1093/eurpub/ckab061 DOI: https://doi.org/10.1093/eurpub/ckab061
FRANCH-PARDO, Ivan; DESJARDINS, Michael; BAREA-NAVARRO, Isabel and CERDÀ, Artemi. (2021). “A review of GIS methodologies to analyze the dynamics of COVID-19 in the second half of 2020”. Transactions in GIS, 25 (5), 2191-2239. https://doi.org/10.1111/tgis.12792 DOI: https://doi.org/10.1111/tgis.12792
FRANCH-PARDO, Ivan; NAPOLETANO, Brian; ROSETE-VERGES, Fernando and BILLA, Lawal (2020). “Spatial analysis and GIS in the study of COVID-19. A review”. Science of The Total Environment, 739, 140033. https://doi.org/10.1016/j.scitotenv.2020.140033 DOI: https://doi.org/10.1016/j.scitotenv.2020.140033
GARCÍA-GARCÍA, David; HERRANZ-HERNÁNDEZ, Rafael; ROJAS-BENEDICTO, Ayelen; LEÓN-GÓMEZ, Inmaculada; LARRAURI, Amparo; PEÑUELAS, Marina; GUERRERO-VADILLO, María; RAMIS, Rebeca and GÓMEZ-BARROSO, Diana (2022). “Perimeter confinements of basic health zones and COVID-19 incidence in Madrid, Spain”. BMC Public Health, 22 (1), 216. https://doi.org/10.1186/s12889-022-12626-x DOI: https://doi.org/10.1186/s12889-022-12626-x
GAYNOR, Tia Sherèe and WILSON, Meghan (2020). “Social Vulnerability and Equity: The Disproportionate Impact of COVID”. Public Administration Review, 80 (5), 832-838. https://doi.org/10.1111/puar.13264 DOI: https://doi.org/10.1111/puar.13264
GONZÁLEZ PÉREZ, Jesús and PIÑEIRA MANTIÑÁN, María José (2020). “La ciudad desigual en Palma (Mallorca): geografía del confinamiento durante la pandemia de la COVID-19”. Boletín de la Asociación de Geógrafos Españoles, 87. https://doi.org/10.21138/bage.2998 DOI: https://doi.org/10.21138/bage.2998
HAMIDI, Shima; SABOURI, Sadegh and EWING, Reid (2020). “Does Density Aggravate the COVID-19 Pandemic?” Journal of the American Planning Association, 86 (4), 495-509. https://doi.org/10.1080/01944363.2020.1777891 DOI: https://doi.org/10.1080/01944363.2020.1777891
HIERRO, María and MAZA, Alfonso (2023). “Spatial contagion during the first wave of the COVID‐19 pandemic: Some lessons from the case of Madrid, Spain”. Regional Science Policy & Practice, 15 (3), 474-492. https://doi.org/10.1111/rsp3.12522 DOI: https://doi.org/10.1111/rsp3.12522
INSTITUTO DE SALUD CARLOS III (ISCIII). Informe n.o 173. Situación de COVID-19 en España. Retrieved from https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Paginas/-COVID-19.-Informes-previos.aspx [Accessed: 03 April 2023]
INSTITUTO NACIONAL DE ESTADÍSTICA (2021). Estadística experimental. Atlas de la distribución de renta de los hogares. Retrieved from https://www.ine.es/experimental/atlas/experimental_atlas.htm [Accessed: 24 July 2021]
KARAYE, Ibraheem and HORNEY, Jennifer (2020). “The Impact of Social Vulnerability on COVID-19 in the U.S.: An Analysis of Spatially Varying Relationships”. American Journal of Preventive Medicine, 59 (3), 317-325. https://doi.org/10.1016/j.amepre.2020.06.006 DOI: https://doi.org/10.1016/j.amepre.2020.06.006
KLING, Samuel (2020). “Is the City Itself the Problem? The Long History of Demonizing Urban Density”. Bloomberg City Lab. Retrieved from https://www.bloomberg.com/news/articles/2020-04-20/the-long-history-of-demonizing-urban-density
KOLAK, Marinya; BHATT, Jay; HONG PARK, Yoon; PADRÓN, Norma and MOLEFE, Ayrin (2020). “Quantification of Neighborhood-Level Social Determinants of Health in the Continental United States”. JAMA Network Open, 3 (1), 1919928. https://doi.org/10.1001/jamanetworkopen.2019.19928 DOI: https://doi.org/10.1001/jamanetworkopen.2019.19928
KONSTANTINOUDIS, Garyfallos; CAMELETTI, Michela; GÓMEZ-RUBIO, Virgilio; LEÓN GÓMEZ, Inmaculada; PIRANI, Mónica; BAIO, Gianluca; LARRAURI, Amparo; RIOU, Julien; EGGER, Matthias; VINEIS, Paolo and BLANGIARDO, Marta (2022). “Regional excess mortality during the 2020 COVID-19 pandemic in five European countries”. Nature Communications, 13 (1), 482. https://doi.org/10.1038/s41467-022-28157-3 DOI: https://doi.org/10.1038/s41467-022-28157-3
LI, Yige; UNDURRAGA, Eduardo and ZUBIZARRETA, José (2022). “Effectiveness of Localized Lockdowns in the COVID-19 Pandemic”. American Journal of Epidemiology, 191 (5), 812-824. https://doi.org/10.1093/aje/kwac008 DOI: https://doi.org/10.1093/aje/kwac008
LÓPEZ-GAY, Antonio; SPIJKER, Jeroen; COLE, Helen; MARQUES, Antonio; TRIGUERO-MAS, Margarita; ANGUELOVSKI, Isabelle; MARÍ-DELL’OLMO, Marc; MÓDENES, Juan; ÁLAMO-JUNQUERA, Dolores; LÓPEZ-GALLEGO, Fernando and BORRELL, Carme (2022). “Sociodemographic determinants of intraurban variations in COVID-19 incidence: the case of Barcelona”. Journal of Epidemiology and Community Health, 76 (1), 1-7. https://doi.org/10.1136/jech-2020-216325 DOI: https://doi.org/10.1136/jech-2020-216325
MARÍ-DELL’OLMO, Marc; GOTSENS, Mercè; PASARÍN, María Isabel; RODRÍGUEZ-SANZ, Maica; ARTAZCOZ, Lucía; GARCIA DE OLALLA, Patricia; RIUS, Cristina and BORRELL, Carme (2021). “Socioeconomic Inequalities in COVID-19 in a European Urban Area: Two Waves, Two Patterns”. International Journal of Environmental Research and Public Health, 18 (3), 1256. https://doi.org/10.3390/ijerph18031256 DOI: https://doi.org/10.3390/ijerph18031256
MAZA, Adolfo and HIERRO, María (2021). “Modelling changing patterns in the COVID‐19 geographical distribution: Madrid’s case”. Geographical Research, 60 (2), 218-231. https://doi.org/10.1111/1745-5871.12521 DOI: https://doi.org/10.1111/1745-5871.12521
MENA, Gonzalo; MARTINEZ, Pamela; MAHMUD, Ayesha; MARQUET, Pablo; BUCKEE, Caroline and SANTILLANA, Mauricio (2021). “Socioeconomic status determines COVID-19 incidence and related mortality in Santiago, Chile”. Science, 372 (6545). https://doi.org/10.1126/science.abg5298 DOI: https://doi.org/10.1126/science.abg5298
MOLLALO, Abolfazl; VAHEDI, Behzad and RIVERA, Kiara M. (2020). “GIS-based spatial modeling of COVID-19 incidence rate in the continental United States”. Science of The Total Environment, 728, (138884). https://doi.org/10.1016/j.scitotenv.2020.138884 DOI: https://doi.org/10.1016/j.scitotenv.2020.138884
MOLNAR, Christoph (2019). Interpretable machine learning. A Guide for Making Black Box Models Explainable. Retrieved from https://christophm.github.io/interpretable-ml-book/
MUSTERD, Sako; MARCINCZAK, Szymon; VAN HAM, Maarten and TAMMARU, Tiit (2017). “Socioeconomic segregation in European capital cities. Increasing separation between poor and rich”. Urban Geography, 38 (7), 1062-1083. https://doi.org/10.1080/02723638.2016.1228371 DOI: https://doi.org/10.1080/02723638.2016.1228371
NIU, Xinyi; YUE, Yufeng; ZHOU, Xingang and ZHANG, Xiaohu (2020). “How Urban Factors Affect the Spatiotemporal Distribution of Infectious Diseases in Addition to Intercity Population Movement in China”. International Journal of Geo-Information, 9 (11), 615. https://doi.org/10.3390/ijgi9110615 DOI: https://doi.org/10.3390/ijgi9110615
OMS (n.d.). WHO Coronavirus (COVID-19) Dashboard. Retrieved from https://covid19.who.int/table
RAYMUNDO, Carlos Eduardo; CINI OLIVEIRA, Marcella; DE ARAÚJO ELEUTERIO, Tatiana; ANDRÉ, Suzana Rosa; GONÇALVES DA SILVA, Marcele; DA SILVA QUEIROZ, Eny Regina and DE ANDRADE MEDRONHO, Roberto (2021). “Spatial analysis of COVID-19 incidence and the sociodemographic context in Brazil”. PLOS ONE, 16 (3), e0247794. https://doi.org/10.1371/journal.pone.0247794 DOI: https://doi.org/10.1371/journal.pone.0247794
RODRÍGUEZ‐POSE, Andrés and BURLINA, Chiara (2021). “Institutions and the uneven geography of the first wave of the COVID‐19 pandemic”. Journal of Regional Science, 61 (4), 728-752. https://doi.org/10.1111/jors.12541 DOI: https://doi.org/10.1111/jors.12541
ROMERO STARKE, Karla; REISSIG, David; PETEREIT-HAACK, Gabriela; SCHMAUDER, Stefanie; NIENHAUS, Albert and SEIDLER, Andreas (2021). “The isolated effect of age on the risk of COVID-19 severe outcomes: a systematic review with meta-analysis”. BMJ Global Health, 6 (12), e006434. https://doi.org/10.1136/bmjgh-2021-006434 DOI: https://doi.org/10.1136/bmjgh-2021-006434
RUIZ-PÉREZ, Maurici; MORAGUES, Alexandre; SEGUÍ-PONS, Joana Maria; MUNCUNILL, Josep; POU GOYANES, Albert and COLOM FERNÁNDEZ, Antoni (2023). “Geographical Distribution and Social Justice of the COVID-19 Pandemic: The Case of Palma (Balearic Islands)”. GeoHealth, 7 (2). https://doi.org/10.1029/2022GH000733 DOI: https://doi.org/10.1029/2022GH000733
SALMON, Charleen; FLANAGAN, Jordyn; FARKAS, Brenlea; MASTHIKINA, Liza; EGUNSOLA, Oluwaseun; SAXINGER, Lynora; SKIDMORE, Becky and CLEMENT, Fiona (2021). “Transmissibility of COVID-19 among vaccinated individuals”. Retrieved from https://sporevidencealliance.ca/wp-content/uploads/2021/10/Transmissibility-of-COVID-Vaccinated-Individuals_Final-Report_2021.09.24.pdf
SANTESMASSES, Didac; CASTRO, Jose Pedro; ZENIN, Alexandr; SHINDYAPINA, Anastasia; GERASHCHENKO, Maxim; ZHANG, Bohan; KEREPESI, Csaba; YIM, Sun Hee; FEDICHEV, Peter and GLADYSHEV, Vadim (2020). “COVID‐19 is an emergent disease of aging”. Aging Cell, 19 (10). https://doi.org/10.1111/acel.13230 DOI: https://doi.org/10.1111/acel.13230
SASSON, Isaac (2021). “Age and COVID-19 mortality: A comparison of Gompertz doubling time across countries and causes of death”. Demographic Research, 44, 379-396. https://doi.org/10.4054/DemRes.2021.44.16 DOI: https://doi.org/10.4054/DemRes.2021.44.16
SCHELLEKENS, Philip and SOURROUILLE, Diego (2020). The unreal dichotomy in COVID-19 mortality between high-income and developing countries. Retrieved from https://www.brookings.edu/blog/future-development/2020/05/05/the-unreal-dichotomy-in-covid-19-mortality-between-high-income-and-developing-countries/ [Accessed: 02/05/2023]
SIGLER, Thomas; MAHMUDA, Sirat; KIMPTON, Anthony; LOGINOVA, Julia; WOHLAND-JAKHAR, Pia; CHARLES-EDWARDS, Elin and CORCORAN, Jonathan (2020). “The Socio-Spatial Determinants of COVID-19 Diffusion: The Impact of Globalisation, Settlement Characteristics and Population”. Research Square, preprint. https://doi.org/10.21203/rs.3.rs-33615/v1 DOI: https://doi.org/10.21203/rs.3.rs-33615/v1
SORANDO, Daniel and LEAL, Jesús (2019). “Distantes y desiguales: el declive de la mezcla social en Barcelona y Madrid/Distant and Unequal: The Decline of Social Mixing in Barcelona and Madrid”. Revista Española de Investigaciones Sociológicas, 167, 125-148. https://doi.org/10.5477/cis/reis.167.125 DOI: https://doi.org/10.5477/cis/reis.167.125
SOURIS, Marc (2019). Épidémiologie et géographie, principes, méthodes et outils de l´analyse spatiales. London: ISTE Editions Ltd. DOI: https://doi.org/10.51926/ISTE.9781784055738
TCHICAYA, Anastase; LORENTZ, Nathalie; LEDUC, Kristell and DE LANCHY, Gaetan (2021). “COVID-19 mortality with regard to healthcare services availability, health risks, and socio-spatial factors at department level in France: A spatial cross-sectional analysis”. PloS One, 16 (9), e0256857. https://doi.org/10.1371/journal.pone.0256857 DOI: https://doi.org/10.1371/journal.pone.0256857
TEPE, Emre (2023). “The impact of built and socio-economic environment factors on Covid-19 transmission at the ZIP-code level in Florida”. Journal of Environmental Management, 326, 116806. https://doi.org/10.1016/j.jenvman.2022.116806 DOI: https://doi.org/10.1016/j.jenvman.2022.116806
TOKEY, Ahmad Ilderim (2021). “Spatial association of mobility and COVID-19 infection rate in the USA: A county-level study using mobile phone location data”. Journal of Transport & Health, 22, 101135. https://doi.org/10.1016/j.jth.2021.101135 DOI: https://doi.org/10.1016/j.jth.2021.101135
WANG, Haidong; PAULSON, Katherin; PEASE, Spencer; WATSON, Stefanie; COMFORT, Haley; ZHENG, Peng; ARAVKIN, Aleksandr; BISIGNANO, Catherin; BARBER, Ryan; ALAM, Tahiya; FULLER, John; MAY, Erin; JONES, Darwin Phan; FRISCH, Meghan; ABBAFATI, Cristiana; ADOLPH, Christopher; ALLORANT, Adrien; AMLAG, Joanne; BANG-JENSEN, Bree; … MURRAY, Christopher (2022). “Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020–21”. The Lancet, 399 (10334), 1513-1536. https://doi.org/10.1016/S0140-6736(21)02796-3 DOI: https://doi.org/10.1016/S0140-6736(21)02796-3
YOU, Heyuan; WU, Xin and GUO, Xuxu (2020). “Distribution of COVID-19 Morbidity Rate in Association with Social and Economic Factors in Wuhan, China: Implications for Urban Development”. International Journal of Environmental Research and Public Health, 17 (10). https://doi.org/10.3390/ijerph17103417 DOI: https://doi.org/10.3390/ijerph17103417
ZHANG, Xinxuan; MAGGIONI, Viviana; HOUSER, Paul; XUE, Yuan and MEI, Yiwen (2022). “The impact of weather condition and social activity on COVID-19 transmission in the United States”. Journal of Environmental Management, 302, 114085. https://doi.org/10.1016/j.jenvman.2021.114085 DOI: https://doi.org/10.1016/j.jenvman.2021.114085
Publicado
Cómo citar
Descargas
Derechos de autor 2024 Severino Escolano-Utrilla, Andrés Roca-Medina, Diego Barrado-Timón
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.