Big Data i noves geografies: l’empremta digital de les activitats humanes
Resum
El terme Big Data s’ha popularitzat en els últims anys i fa referència a la producció de quantitats ingents de dades. L’activitat humana és captada a través de múltiples xarxes de sensors i dispositius i, per tant, deixa una empremta digital. L’anàlisi d’aquesta empremta digital té un gran potencial per a la investigació geogràfica del comportament humà. En aquest article es descriuen les principals característiques del Big Data i es destaca la importància de les dades massives per a la ciència i, particularment, per a la Geografia, centrant l’atenció en l’estudi dels patrons espaciotemporals de l’activitat humana.Paraules clau
Big Data, dades geolocalitzades, comportament humàReferències
ALEXANDER, L.; JIANG, S.; MURGA, M. y GONZÁLEZ, M. C. (2015). «Origin-destination trips by purpose and time of day inferred from mobile phone data», Transportation Research Part C: Emerging Technologies, 58, 240-250.
BAR-GERA, H. (2007). «Evaluation of a cellular phone-based system for measurements of traffic speeds and travel times: a case study from Israel», Transportation Research Part C: Emerging Technologies, 15 (6), 380-391. http://dx.doi.org/10.1016/j.trc.2007.06.003
BASSOLAS, A., LENORMAND, M., TUGORES, A., GONÇALVES, B. y RAMASCO, J. J. (2016). «Touristic site attractiveness seen through Twitter». EPJ Data Science, 5 (1), 12.
BATES, J. (2012). «‘This is what modern deregulation looks like’: co-optation and contestation in the shaping of the UK’s Open Government Data Initiative». The Journal of Community Informatics, 8 (2).
BATTY, M. (2010). «The pulse of the city». Environment and Planning B: Planning and Design, 37, 575-577.
— (2013). «Big Data, smart cities and city planning». Dialogues in Human Geography, 3 (3), 274-279.
BLOEM, J.; VAN DOORN, M.; DUIVESTEIN, S.; EXCOFFIER, D.; MAAS, R. y VAN OMMEREN, E. (2014). The Fourth Industrial Revolution. Things Tighten.
BOISJOLY, G. y EL-GENEIDY, A. (2016). «Daily fluctuations in transit and job availability: A comparative assessment of time-sensitive accessibility measures». Journal of Transport Geography, 52, 73-81.
CÁCERES, N. (2012). «Traffic Flow Estimation Models Using Cellular Phone Data», IEEE Transactions on Intelligent Transportation Systems, 1-12. http://dx.doi.org/10.1109/TITS.2012.2189006
CÁCERES, N., WIDEBERG, J. P. y BENÍTEZ, F. G. (2007). «Deriving origin-destination data from a mobile phone network», IET Intelligent Transport Systems, 1, 15-26. http://dx.doi.org/10.1049/iet-its:20060020
CALABRESE, F.; LORENZO, G. D.; PEREIRA, F. C.; LIU, L. y RATTI, C. (2010). Analyzing Cell-phone Mobility and Social Events. NetMob-Analysis of Mobile Phone Networks. Cambridge, MA.
CASTELL, N.; DAUGE, F. R.; SCHNEIDER, P.; VOGT, M.; LERNER, U.; FISHBAIN, B.; BRODAY, D. y BARTONOVA, A. (2017). «Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates?». Environment International, 99, 293-302.
CHEN, M.; MAO, S. y LIU, Y. (2014). «Big Data: A survey». Mobile Networks and Applications, 19 (2), 171-209.
CHEN, C.; MA, J.; SUSILO, Y.; LIU, Y. y WANG, M. (2016). «The promises of Big Data and small data for travel behavior (aka human mobility) analysis». Transportation Research Part C: Emerging Technologies, 68, 285-299.
DELYSER, D. y SUI, D. (2014). «Crossing the qualitative-quantitative chasm III: Enduring methods, open geography, participatory research, and the fourth paradigm». Progress in Human Geography, 38 (2), 294-307.
DE DOMENICO, M.; LIMA, A. y MUSOLESI, M. (2013). «Interdependence and predictability of human mobility and social interactions», Pervasive and Mobile Computing, 9 (6), 798-807. http://dx.doi.org/10.1016/j.pmcj.2013.07.008
DEWULF, B.; NEUTENS, T.; LEFEBVRE, W.; SEYNAEVE, G.; VANPOUCKE, C.; BECKX, C. y VAN DE WEGHE, N. (2016). «Dynamic assessment of exposure to air pollution using mobile phone data». International Journal of Health Geographic, 15 (1), 14.
FARBER, S.; MORANG, M. Z. y WIDENER, M. J. (2014). «Temporal variability in transit-based accessibility to supermarkets». Applied Geography, 53, 149-159.
FARBER, S. y FU, L. (2017). «Dynamic public transit accessibility using travel time cubes: Comparing the effects of infrastructure (dis) investments over time». Computers, Environment and Urban Systems, 62, 30-40.
GARCÍA-PALOMARES, J. C.; SALAS-OLMEDO, M. H.; MOYA-GÓMEZ, B.; CONDEÇO-MELHORADO, A. M. y GUTIÉRREZ, J. (2018). «City dynamics through Twitter: relationships between land use and spatiotemporal demographics». Cities, 72, 310-319.
GONZALEZ, M. C.; HIDALGO, C. A. y BARABASI, A.-L. (2008). «Understanding individual human mobility patterns». Nature, 453 (5), 779-782.
GOODCHILD, M. F. (2007). «In the World of Web 2.0». International Journal, 2, 24-32.
GRAY, J. y SZALAY, E. (2007). eScience - a transformed scientific method. Presentation made to the NRC-CSTB. http://research.microsoft.com/en-us/um/people/gray/talks/NRC-CSTB_eScience.ppt
GUTIÉRREZ, J.; GARCÍA-PALOMARES, J. C., ROMANILLOS, G. y SALAS-OLMEDO, M. H. (2017). «The eruption of Airbnb in tourist cities: Comparing spatial patterns of hotels and peer-to-peer accommodation in Barcelona». Tourism Management, 62, 278-291.
HAWELKA, B.; SITKO, I.; BEINAT, E.; SOBOLEVSKY, S.; KAZAKOPOULOS, P. y RATTI, C. (2014). «Geo-located Twitter as proxy for global mobility patterns». Cartography and Geographic Information Science, 41 (3), 260-271.
HEY, T.; TANSLEY, S.; y TOLLE, K. I. (2009). The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond, WA: Microsoft Research.
KAISLER, S.; ARMOUR, F.; ESPINOSA, J. A. y MONEY, W. (2013, enero). «Big Data: Issues and challenges moving forward». En: System Sciences (HICSS), 2013. 46th Hawaii International Conference. IEEE. 995-1004.
KITCHIN, R. (2013). «Big Data and human geography: opportunities, challenges and risks». Dialogues in Human Geography, 3 (3), 262-267.
— (2014). «Big Data, new epistemologies and paradigm shifts». Big Data & Society, 1 (1), 1-12.
LESZCZYNSKI, A. y CRAMPTON, J. (2016). «Introduction: spatial big data and everyday life». Big Data & Society, 3 (2), 1-6.
MILLER, H. J. (2010). «The data avalanche is here. Shouldn’t we be digging?». Journal of Regional Science, 50 (1), 181-201.
MOYA-GÓMEZ, B. y GARCÍA-PALOMARES, J. C. (2015). «Working with the daily variation in infrastructure performance. The cases of Madrid and Barcelona». European Transport Research Review, 7 (2), 1-13
MOYA-GÓMEZ, B.; SALAS-OLMEDO, M. H.; GARCÍA-PALOMARES, J. C. y GUTIÉRREZ, J. (2017). «Dynamic accessibility using Big Data: The role of the changing conditions of network congestion and destination attractiveness». Networks and Spatial Economics. https://doi.org/10.1007/s11067-017-9348-z
MUNIZAGA, M.; PALMA, C. y MORA, P. (2010). «Public transport OD matrix estimation from smart card payment system data». En: Proceedings from 12th World Conference on Transport Research. Lisboa, Paper, 2988.
NETTO, V. M.; PINHEIRO, M.; MEIRELLES, J. V. y LEITE, H. (2015). «Digital footprints in the cityscape: finding networks of segregation through Big Data». En: International Conference on Location-Based Social Media Data. Atenas, 1-15.
PICORNELL, M.; RUIZ, T.; LENORMAND, M.; RAMASCO, J. J.; DUBERNET, T. y FRÍAS-MARTÍNEZ, E. (2015). «Exploring the potential of phone call data to characterize the relationship between social network and travel behavior». Transportation, 42, 647-668.
ROMANILLOS, G. y ZALTZ AUSTWICK, M. (2016). «Madrid cycle track: visualizing the cyclable city». Journal of Maps, 12 (5), 1218-1226.
SALAS-OLMEDO, M. H.; MOYA-GÓMEZ, B.; GARCÍA-PALOMARES, J. C. y GUTIÉRREZ, J. (2018). «Tourists’ digital footprint in cities: Comparing Big Data sources». Tourism Management, 66, 13-25.
SHELTON, T.; POORTHUIS, A. y ZOOK, M. (2015). «Social media and the city: Rethinking urban socio-spatial inequality using user-generated geographic information», Landscape and Urban Planning, 142, 198-211.
SCHWAB, K. (2017). The fourth industrial revolution. Crown Business.
SOBOLEVSKY, S.; SITKO, I.; DES COMBES, R. T.; HAWELKA, B.; ARIAS, J. M. y RATTI, C. (2016). «Cities through the prism of people’s spending behavior». PloS one, 11 (2), 1-19.
STĘPNIAK, M. y GOLISZEK, S. (2017). «Spatio-temporal variation of accessibility by public transport-the equity perspective». En: The Rise of Big Spatial Data. Springer International Publishing, 241-261.
TAO, S.; ROHDE, D. y CORCORAN, J. (2014). «Examining the spatial-temporal dynamics of bus passenger travel behavior using smart card data and the flow-comap», Journal of Transport Geography, 41, 21-36. http://dx.doi.org/10.1016/j.jtrangeo.2014.08.006
TOOLE, J. L.; COLAK, S.; STURT, B.; ALEXANDER, L. P.; EVSUKOFF, A. Y GONZÁLEZ, M. C. (2015). «The path most traveled: Travel demand estimation using big data resources». Transportation Research Part C: Emerging Technologies, 58, 162-177.
XIA, F.; YANG, L. T.; WANG, L. y VINEL, A. (2012). «Internet of things». International Journal of Communication Systems, 25 (9), 1101-1102.
Publicades
Com citar
Descàrregues
Drets d'autor (c) 2018 Javier Gutiérrez Puebla
Aquesta obra està sota una llicència internacional Creative Commons Reconeixement-NoComercial 4.0.